

PERSONALIZED INTERVENTION FOR PSYCHOLOGICAL PROBLEMS

Bonnie Klimes-Dougan, Ph.D., LP

Program of Research

- The overarching goal of my research is to understand and alleviate the suffering of those who struggle with distress, depression, and despair (self-injury and suicide).
 - Identify risk and protective factors
 Identify optimal methods of intervening
 Personalization

Premis

- Clinical practice in many areas of medicine is shifting toward personalized treatment. In other words, clinicians aim to treat patients based on their individual characteristics, including clinical presentation and/or biological markers.
- Biomarkers can help clinicians select the most effective treatments or reduce the risk of side effects by avoiding certain treatments in susceptible patients.

Outline

- I. Depression, adolescent development and disruption of the threat system.
- II. EBTs are Available to Treat Adolescent Depression
- III. The Solution of Personalization
- IV. Biological Markers Predicting Treatment Response for Adolescents with Depression

I. Depression, adolescent development, and functioning of the threat system

Depression

- Common Problem16% of the population
- Morbidity and Mortality
 - 60-70% of suicides are associated with a mood disorder
- Significant Impairment
 - Leading cause of economic global impairment worldwide

Recurrent / Progressive

- Early onset is associated with a poor prognosis
- Brain plasticity may be critical

Brent & Kolko, 1990; www.sdchip.org/work_teams/wt_na/wt_na_pdfs/F-depression%

Functions of the Threat System

ROBERT M. SAPOLSKY

• SHORT TERM PROJECTS

- Mobilizes energy glucose
- Raises HR/BP
- Blunts pain

LONG TERM PROJECTS

- Slows digestion
- Slows growth
- Slows reproduction
- Suppresses immune functioning
- Speeds up aging

Adolescent Development

Somerville, Jones, & Casey, 2009

A. PFC
 B. Subcortical/Limbic
 Amygdala - Threat
 Striatal - Reward

Threat System and Depression

Cortical and Limbic Structures

• Differentially influence these key brain regions

Cortical (PFC) Limbic (Amygdala)

Limbic (Hippocampus)

http://www.ncbi.nlm.nih.gov/books/NBK3914/figure/ch12.f6/?report=objectonly

Impacts on the Brain

Glucocorticoid Receptors (GR) Mineralocorticoid Receptors (MR)

- Key Receptors
 - GR glucocordicoid
 - MR mineralcorticoid
- Receptor Regions of Concentration
 - Amygdala
 - Hippocampus
 - Hypothalamus
 - VMPFC

II. EBTs are Available to Treat Adolescent Depression

The Mental Health Intervention Spectrum for Mental Disorders

Note. From Reducing Risks for Mental Disorders: Frontiers for Preventive Intervention Research (p. 23), by P. J. Mrazek and R. J. Haggerty (Eds.), 1994, Washington, DC: National Academy Press. Copyright 1994 by National Academy Press. Reprinted with permission.

Evidence Based Treatments

Source: Expert Rev Pharmacoeconomics Outcomes Res © 2007 Future Drugs Ltd

Guidelines Based on Depression Severity

Mild	Mild to moderate	Moderate to Severe		
 Psycho- education Supportive Therapy 	 Cognitive Behavioral Therapy (CBT) 	 Medication Medication + CBT or IPT 		
	 Interpersonal Therapy (IPT) 			

Birmaher B. et al. *J Am Acad Child Adolesc Psychiatry*. 2007;46:1503-1526. Boylan K, et al. *Psychopharmacology*. 2007;191:27—38.

Hypothetical model of functional changes in amygdala and the main prefrontal areas involved in anxiety disorders and major depressive disorder.

Limitations of EBTs

• The impact of EBTs will fall short if a one-size fits all assumptions continues to be made when utilizing EBTs

II. The Solution of Personalization

Current Treatments have Response/Recovery Rates of 43%-71%

Current Treatments have Response/Recovery Rates of 43%-71%

The Cost of Choosing the "Wrong" Treatment

- Personal / Societal Problem
 - Loss of productivity (Global Burden of Dz)
 - Continued distress / Suicide risk
 - Discouragement from help-seeking
 - Wasted resources
 - Health-care costs
 - Practitioner time/money which could be treating those who will respond

Solution Options

- Dosage change?
- Components adjust?
- Treatment add?
- Personalization?
 - Preference
 - (Mergl, et al, 2011)
 - Clinical Predictors
 - Biological Markers

Personalizing Treatment

The next step: to move beyond determining what treatments *work* to identifying which treatments work *for whom*

Identifying patient characteristics that predict or interact with (moderate) treatment can guide clinicians in selecting a treatment that more rapidly and efficiently manages depression for a specific group of individuals

Current Status of Search for Tailoring Variables

- Infinite Possibilities?
- Psychosocial
 - not yielded the wealth of findings
- Biological
 - There is excitement about the possibility of identifying indexes linked with underlying biological mechanisms (biomarkers) that can guide treatment decisions

Main Approaches for Biological Predictors

- Brain (circuits)
 - Neuroimaging
 - Neuropsychological testing
 - Neurotransmitters
- Body (physiology)
 - HPA Axis
- Genes
 - Molecular genetics
 - Epigenetics

IV. Biological Markers Predicting Treatment Response

Neurobiology of Depression

Common Choice of Medication for Depression

- Exact mechanisms of SSRIs are still fully not understood
 - extracellular increases in serotonin levels (partially do to SSRI blocking reabsorption due to abnormalities in 5-HT1A receptor)
- SSRIs may alter brain functioning
 - decreased limbic activation
 - increased cortical activation (ACC, PFC)
- SSRIs may alter HPA axis functioning
 - antidepressants increase GR function, thus leading to resolution of glucocorticoid resistance

Red: dFr = dorsolateral prefrontal; inf Par = inferior parietal; <math>dCg = dorsal anterior cingulate; pCg = posterior cingulate. Blue: Cg 25 = subgenual (infralimbic) cingulate; vlns = ventral anterior insula, Hc = hippocampus; vFr = ventral frontal; Hth = hypothalamus. Yellow: rCg = rostral anterior cingulate.White: mb-p = midbrain-pons; BG = basal ganglia; Th = thalamus; Am = amygdala.

From: Toward a Neuroimaging Treatment Selection Biomarker for Major Depressive Disorder

JAMA Psychiatry. 2013;():1-9. doi:10.1001/jamapsychiatry.2013.143

						Effect Sizes ^b				
	MNI C	Coordinates	, Peak		Cluster Size. ^a	REM-NR	REM-NR	CBT-sCIT	CBT-sCIT	Average Marginal
Region	X	Y	Z	Side	Voxels	to CBT	to sCIT	in NR	in REM	ES
Anterior insula	+30.0	+24.0	-13.5	R	529	1.69	1.17	1.52	1.33	1.43
Inferior temporal (BA 20)	+42.0	-33.0	-25.5	R	469	1.23	1.45	2.09	0.59	1.34
Amygdala	-27.0	-7.5	-27.0	L	233	0.98	1.61	1.89		
Premotor (BA 6)	-27.0	+1.5	+58.5	L	233	1.40	1.03	1.75		6
Motor (BA 4)	+25.5	-27.0	+60.0	R	147	0.61	1.78	1.80		
Precuneus (BA 7)	-18.0	-67.5	+43.5	L	101	1.18	1.27	1.37		20

Table 2. Treatment by Outcome Interaction Results and Post hoc Analyses of Extracted Regions of Interest

Abbreviations: BA, Brodmann area; CBT, cognitive behavior therapy; CBT-sCIT, mean difference between CBT and escitalopran Montreal Neurological Institute; NR, nonresponders; REM, remitters; REM-NR, mean difference between remitters and nonrespo escitalopram oxalate.

^aWhole-brain 2-way analysis of variance with P < .001 uncorrected; voxel size, 1.5 mm × 1.5 mm × 1.5 mm. ^b Effect size = mean difference divided by pooled standard deviation.

Figure Legend:

Copyright © 2002 by Mosby, Inc

Date of download: 7/10/2013

Copyright © 2012 American Medical Association. All rights reserved.

Research on Adolescent Depression

•Aim: To identify whether neurobiological functioning is associated with favorable antidepressant response in adolescents with depression

• Frontolimibic (rest and task) functioning at baseline will predict a decline in depressive symptoms

•Neuroendocrine functioning at baseline will predict a decline in depressive symptoms

Klimes-Dougan, Cullen et al., in preparation

Antidepressant Intervention Pilot Study

Baseline Demographic Characteristics	
Ν	13
Age (mean years, SD)	15.5, 2.3
Sex (male/female)	4/9 (69% female)
Right Handed- <u>n(</u> %)	12 (92%)
Ethnicity - <u>n(</u> %)	
Caucasian	13 (100%)
Hispanic	4 (31%)
Current Comorbidities - <u>n(</u> %)	9 (69%)
Attention Deficit and Hyperactive Disorder	3 (23%)
Generalized Anxiety Disorder	4 (31%)
Post-traumatic Stress Disorder	1 (8%)
Social Anxiety	1 (8%)
Dysthymia	1 (8%)
Specific Phobia	1 (8%)
Anxiety NOS	1 (8%)
Med-Naive-n(%)	11 (85%)
Duration of illness (mean months, SD)	15.5, 16.1
Global Assessment of Functioning (mean, SD)	55, 77
Positive Family History	11 (85%, n = 13)
CDRS-R (mean T-score, SD)	73.2, 7.3
BDI-II (mean, SD)	28.79.3 (n=13)

 8 Week Trial of Antidepressant Medication (SSRIs)

Baseline

- Circuits
- Neuropsych
- Physiology

Task Based fMRI Differences

Right Amygdala Activation

Klimes-Dougan, et al, 2014

Neurocircuits – SSRI Results

• Emotion task: Responders showed greater limbic activation (more different from HC) than non-responders.

Emotion contrast: baseline activation predicts change in total depression scores

ACC Subcallosal cortex Precuneus posterior cingulate

Corrected p=0.025. Higher activation in regions shown predicts greater drop in depression scores after treatment

Klimes-Dougan, Cullen et al, in preparation

Neurocircuits – SSRI Results

Amygdala RSFC Predictors of Overall Depression Improvement

Subcallosal cingulate, ACC, precuneus

Right Caudate, left insula

Right insula

Blue: Predicts best response Yellow/Red: Predicts worst response

Klimes-Dougan, Cullen et al., in preparation

Adolescents' Pre-Treatment Cortisol Trajectories Predict Suicide Ideation Patterns Across an 8-week trial of SSRIs

Klimes-Dougan, Cullen et al, in preparation

Summary and Conclusions

- The goal of this line of work it to provide some practical solutions for determining who will respond best from which treatment.
 - Identify Biological Predictors
 - Brain functioning
 - Physiological functioning
 - Genetic functioning
- Cautions
 - How predictive of treatment response?
 - How feasible would these procedures be?

• EXCITING POSSIBILITIES!!!

Acknowledgements

Adolescent MDD Studies

Kathryn Cullen, M.D. Kelvin Lim, M.D. Bryon Mueller, Ph.D. Meredith Gunlicks-Stoessel, Ph.D.

Research on Adolescent Depression (RAD) Lab

Leah Jappe Hall, Ph.D. Melinda Westlund Schreiner, ABD Michelle Thai, B.A. Many other graduate and undergraduate students

FUNDING: NIMH, NARSAD, Engdahl Family Research Fund, UMN-GIA, DPOWH, MMF, CNBD (No conflicts of interest)

Thank You!

Ongoing Recruitment of Studies: University of Minnesota

•Ketamine: •	Study Coordinator: Palistha Amatya • Email: <u>amaty008@umn.edu</u> • Phone: 612-626-8534 Ketamine infusion efficacy for 12-18 year olds with treatment resistant depression	•Mood: •	Study Coordinator: Nathan Horek • Email: <u>nahorek@umn.edu</u> • Phone: 612-626-7635 Neurological functioning of 13- 18 year olds with a diagnosis of a bipolar disorder, depressive disorder, or mood disorder not otherwise specified
•TMS:	Study Coordinator: Palistha Amatya • Email: amaty008@umn.edu • Phone: 612-626-8534 Transcranial Magnetic Stimulation for 12-18 year olds with treatment resistant depression	•BRIDGES:	Study Coordinator: Palistha Amatya • Email: <u>kamp0182@umn.edu</u> • Phone: 612-626-8534 Brain development in young adolescent girls (12-14 years old) with and without a history of self-injury
•High Field: •	Study Coordinator: Nathan Horek • Email: <u>nahorek@umn.edu</u> • Phone: 612-626-7635 High-field brain imaging in 13-17 year old adolescents with Major Depressive Disorder	HEALTH AGES 1	HY CONTROLS: 12 to 19